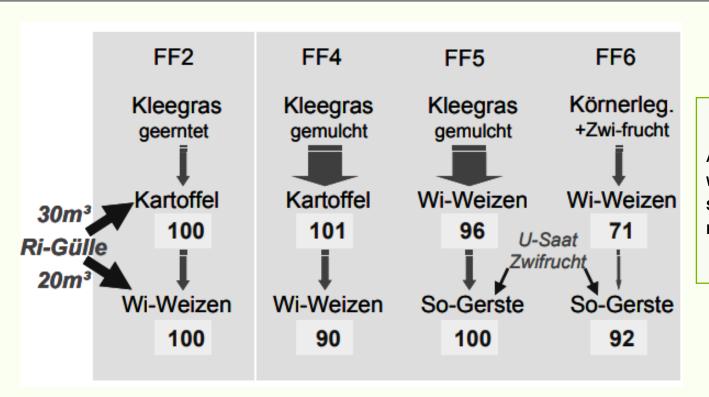

Gliederung

- » Nährstoffkreislauf in Öko-Betrieben und die besonderen Herausforderungen für vieharme bzw. viehlose Betriebe
- » Möglichkeiten der Nährstoffversorgung in solchen Betrieben
- » Worauf ist zu achten bei Leguminosen-Grasgemengen (LGG)
- » Mulchsysteme: "Cut-and-Blow" als Weiterentwicklung von "Cut-and-Carry"

Luftbürtigen Anteile Maispflanze

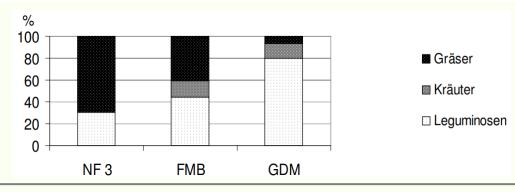
N-Ertrag, N₂-Fixierleistung und Ernterückstände nach LGG


	Potentiell	N ₂ -	Ernterückstände		de
	erntbare	Fixierung	org. Sub-	N-	N-Konzen-
Bestandstyp bzw.	Biomasse		stanz	Menge	tration
Nutzungsform	(dt TM/ha)	(kg N/ha)	(dt OM/ha)	(kg N/ha)	(% d. OM)
überjähr. Kleegras- Grünbrache	80 – 115 ^a	75 – 200	70 – 104	120 – 269	1,4 – 2,6
überjähr. futterbaulich genutztes	85 – 131 ^b	190 – 380	40 – 65	82 – 126	1,5 – 2,4
Kleegras aus Untersaat	00 - 101	100 - 000	40 - 00	02 120	1,0 - 2,4
überjähr. futterbaulich genutztes	80 – 122 ^b	165 – 340	42 – 68	80 – 122	1,6 – 2,3
Kleegras aus Blanksaat	00 122	.55 540	12 00	00 122	.,0 - 2,0
Körnererbsen	27 – 55 ^c	80 – 220	29 – 58	60 – 101	1,6 – 1,9
Erbsen-Gersten-Gemenge Kör-	28 – 51 °	60 – 150	30 – 55	35 – 70	1,0 – 1,4
nernutzung	20 = 01	00 - 100	00 - 00	00 - 70	1,0 - 1,4
Erbsen-Gersten-Gemenge Sila- genutzung	60 – 90 ^b	60 – 150	14 – 23	20 – 35	1,2 – 1,8
Kleeuntersaat in Getreide	10 – 21 ^a	20 – 70	20 – 30	40 – 85	1,9 – 3,0

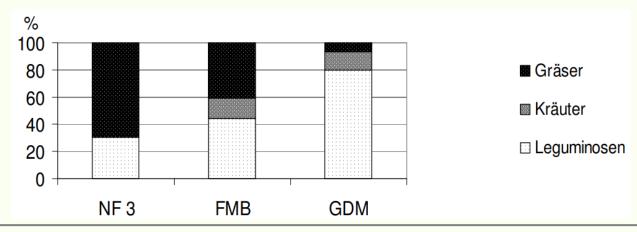
a = Aufwuchs der Gründüngungsbestände auf dem Feld belassen b = geerntete Sprossmasse c = Kornertrag bei 0 % Kornfeuchte

N₂-Fixierleistung, TM und Leguminosenanteil im Dauerfeldversuch der LfL in Viehhausen

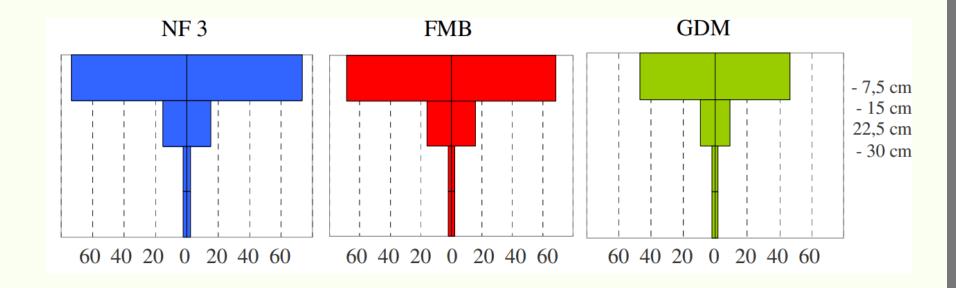
	N ₂ -Fix	ierung	Trockenmasseertrag		Leguminosenanteil	
Jahr	Schnitt	Mulch	Schnitt	Mulch	Schnitt	Mulch
	[kg N	I/ha]	[dt/	ha] ——	[% der Trock	cenmasse]
2000	340	208	164	149	70	54
2001	316	212 -ø 64%	135	123 ø 90	% 74	60 -ø 79
2002	296	188	131	116	76	61


Stickstoffflüsse in ausgewählten Fruchtfolgen im Dauerfeldversuch der LfL in Viehhausen

Absoluterträge: Winterweizen 46 dt/ha Sommergerste 42 dt/ha Kartoffeln 334 dt/ha


Kohlenstoffzufuhr durch verschiedene LGG

	Einheit	NF 3		FMB		GDM	
		Mulch	Schnitt	Mulch	Schnitt	Mulch	Schnitt
Spross	dt C ha ⁻¹	74	73	74	71	76	73
Stoppel	dt C ha ⁻¹	5	5	5	5	5	5
Wurzel	dt C ha ⁻¹	22	21	30	32	25	23
Gesamt-Biomasse	dt C ha ⁻¹	100	100	108	108	105	101
im Bd. verbleibend	dt C ha ⁻¹	100	26	108	36	105	28
Zufuhr Humus	t Humus-C ha ⁻¹	2,3	0,7	2,4	1,0	2,2	0,7



Gleicher Aufwuchs, unterschiedliche Wurzelmasse verschiedener LGG

	ME	NF 3		FMB		GDM	
		Mulch	Schnitt	Mulch	Schnitt	Mulch	Schnitt
Sprossertrag (TM)	dt ha ⁻¹	165 ^a	162 ^a	165 ^a	159 ^a	164 ^a	162 ^a
Stoppel 7 cm (TM)	dt ha ⁻¹	10	10	10	10	10	10
Wurzelmasse (TM)	dt ha ⁻¹	53 ^a	52 ^a	73 ^b	78 ^b	60 ^a	57 ^a

Durchwurzelungsintensität verschiedener LGG



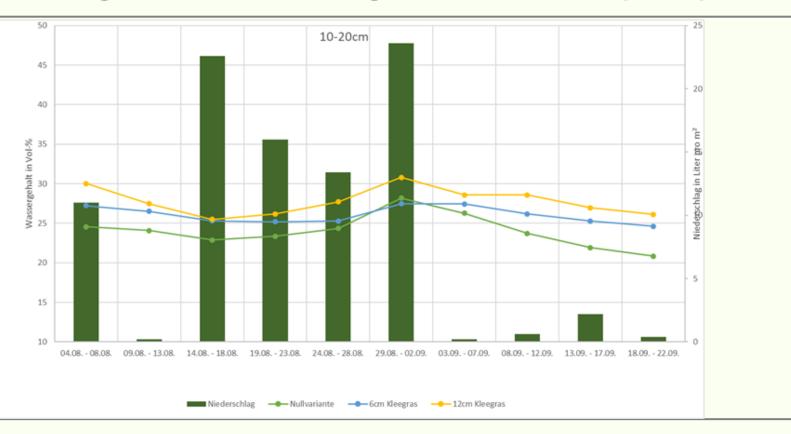
Abb. 2: N-Entzug und N-Ersatz in unterschiedlichen Betriebssystemen im Ökologischen Ackerbauversuch Gladbacherhof, 2. Rotation von 2004 – 2008, alle Angaben im Rotationsmittel – Fruchtfolgeleistung

Leguminosen-Grasgemenge auf der Fläche mulchen

- » Häufig in viehlosen bzw. vieharmen Betrieben praktiziert
- » Einfach durchzuführen, geringe Kosten
- » Aber: Mulchen auf der Fläche und reduziert Kleeanteil im Bestand und Stickstofffixierung im Vergleich zur Schnittnutzung und steigert gasförmige N-Verluste
- » Damit verringert sich die Leistungsfähigkeit der gesamten Fruchtfolge durch das Mulchen auf der Fläche

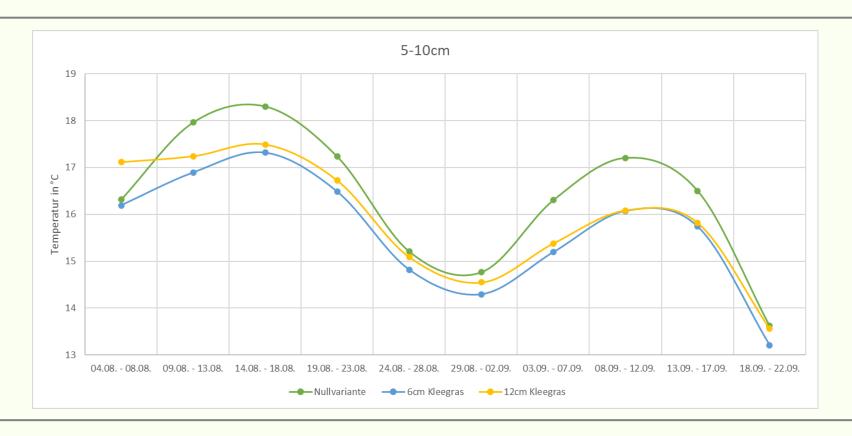
Cut & Carry

"Cut & Carry" macht den Anbau von Futterleguminosen auch für viehlose Betriebe interessant. Foto: Leitbetriebe Ökologischer Landbau NRW, AOL, Uni Bonn



Auswirkungen auf die Bodenfeuchte und -temperatur?

Nach Daten von: Luisa Kühnel, Maximilian Groenen, Frederik Lawrenz, Lucas Reichenberger


Messungen Bodenfeuchtigkeit unter Mais (2021)

Effekte auf die Bodenfeuchtigkeit

- » Eine Kleegrasmulchschicht erhöht die Bodenfeuchtigkeit im Maisbestand signifikant
- » Effekt können in Trockenperioden deutlich ausgeprägter sein
- » Durch höheren Wassergehalt:
 - » Länger aktives Bodenleben bei langem Ausbleiben von Regen
 - » Geringere Hydrophobie des Bodens
 - » Mehr Wasser für Pflanzenwachstum

Messungen Bodentemperatur unter Mais, 2021

Effekte auf Bodentemperatur unter Mais, 2021

- » Kühles Jahr mit vergleichsweise wenig Sonnenstrahlung im August
- » Messungen dauerhaft unter 25°C
- » Unter Mulch:
 - » Tendenziell geringere Temperaturen
 - » Kleinere Temperaturamplituden
 - » Langsamere Temperaturänderungen

Kostenüberblick Cut & Blow

Arbeitsgang	Beschreibung	Kosten/ha
Mähen	Schlepper+Scheibenmähwerk	55 €
Schwaden	Schlepper+Schwader	40 €
Feldhäcksler	Feldhäcksler Gras	105 €
Kosten Gesamt		200 €
Kosten je kg N		2,20 €

Kostenüberblick "Cut & Carry"

Arbeitsgang	Beschreibung	Kosten/ha
Mähen	Schlepper+Scheibenmähwerk	55 €
Schwaden	Schlepper+Schwader	40 €
Feldhäcksler	Feldhäcksler Gras	105 €
Transport/Ausbringug	Schlepper (120 kw) + Miststreuer (16Tonnen)	110 €
Kosten Gesamt		310 €
Kosten je kg/N		3,40 €

Ernteertrag Kartoffel (36 m²) roh und marktfähige Ware

	Parzelle (kg)	Diff. Rohertrag	Diff. marktfähige Ware	
Mit Mulch	137	6%	36%	
Ohne Mulch	129	070	30%	

Einschränkungen im Blick auf Mulchsysteme

- » Tierischer Dung / Gärsubstrat hat höhere Düngequalität und ist zeitlich und räumlich unabhängiger einsetzbar
- » Gasförmige Verluste (z. B. NH₃, N₂O) können auch in Mulchsystemen auftreten
- » Mulchsysteme (Cut-and-Carry und Cut-and-Blow) erfordern zeitgerechtes Handeln und sind mehr oder weniger aufwändig
- » Ohne Wasser vertrocknet das Mulchmaterial und die N\u00e4hrstofffreisetzung ist gehemmt
- » Bei zu weitem C:N-Verhältnis des Mulchmaterials ist die Nährstofffreisetzung gehemmt bzw. unterbunden
- » Die Ernte von Knollenfrüchten kann durch Restmulch erschwert sein